Signed Excedance Enumeration in the Hyperoctahedral group
نویسنده
چکیده
Several signed excedance-like statistics have nice formulae or generating functions when summed over the symmetric group and over its subset of derangements. We give counterparts of some of these results when we sum over the hyperoctahedral group and its subset of derangements. Our results motivate us to define and derive attractive bivariate formulae which generalise some of these results for the symmetric group.
منابع مشابه
Enumerating Excedances with Linear Characters in Classical Weyl Groups
Several signed excedance-type statistics have nice formulae when summed over the symmetric group and over the hyperoctahedral group. Motivated by these, we consider sums of the form fχ,n(q) = ∑ w∈W χ(w)q exc(w) where W is a classical Weyl group of rank n, χ is a non-trivial one-dimensional character of W , and exc(w) is the excedance statistic of w. We give formulae for these sums in a more gen...
متن کاملUse of Signed Permutations in Cryptography
In this paper we consider cryptographic applications of the arithmetic on the hyperoctahedral group. On an appropriate subgroup of the latter, we particularly propose to construct public key cryptosystems based on the discrete logarithm. The fact that the group of signed permutations has rich properties provides fast and easy implementation and makes these systems resistant to attacks like the ...
متن کاملExcedance Numbers for Permutations in Complex Reflection Groups
The classical Weyl groups appear as special cases: for r = s = 1 we have the symmetric group G1,1,n = Sn, for r = 2s = 2 we have the hyperoctahedral group G2,1,n = Bn, and for r = s = 2 we have the group of even-signed permutations G2,2,n = Dn. We say that a permutation π ∈ Gr,s,n is an involution if π 2 = 1. More generally, we define G r,s,n = {σ ∈ Gr,s,n|σ m = 1}. Recently, Bagno, Garber and ...
متن کاملSigned Posets
We define a new object, called a signed poset, that bears the same relation to the hyperoctahedral group B n (i.e., signed permutations on n letters), as do posets to the symmetric group S n. We then prove hyperoctahedral analogues of the following results: (1) the generating function results from the theory of P-partitions; (2) the fundamental theorem of finite distributive lattices (or Birkho...
متن کاملq-EULERIAN POLYNOMIALS: EXCEDANCE NUMBER AND MAJOR INDEX
In this research announcement we present a new q-analog of a classical formula for the exponential generating function of the Eulerian polynomials. The Eulerian polynomials enumerate permutations according to their number of descents or their number of excedances. Our q-Eulerian polynomials are the enumerators for the joint distribution of the excedance statistic and the major index. There is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014